
JOURNAL OF COMPUTATIONAL PHYSICS 9, 528-537 (1972) 

Selection of Stepsize in the Variable-Step Predictor-Corrector 
Method of Van Wyk 

ROBERT E. HUDDLESTON 

Numerical Applications Division 8321, 
Sandia Laboratories, Livermore, California 94550 

Received May 5, 1971 

Van Wyk has proposed and tested some predictor-corrector methods for ordinary 
differential equations which will allow a different mesh size for each equation in the 
system. In this paper we will justify in a more rigorous fashion one aspect of Van 
Wyk’s mesh selection criterion - that of local truncation-error estimation. Van Wyk 
follows the almost universal practice of numerically justifying his truncation-error 
estimator by displaying small relative errors in the solution. All the numerical testing 
in this report will compare the truncation-error estimators against the true local trunca- 
tion error. 

1. INTRODUCTIONS 

We shall be interested in the numerical solution of the initial value problem 

Y’(X) = f(x, Y(X)> (1) 

with initial condition y(a) = A. The results developed in this paper are for a 
generalized form of the Adams-Bashforth-Moulton (ABM) predictor-corrector 
method of fourth order (globally) [2]. However, it will be clear that similar results 
can easily be derived for other predictor-corrector methods. 

The predictor-corrector formulas for ABM can be derived by the following 
procedure. From (I), one has 

j-- y’(x) dx = s^“‘f(x, y(x)) dx. 
TP, x”,, 

If we use the Lagrangian form of the interpolation polynomial to fit the data 

h-i ,f(xn-i 7 YCG-m i=O,1,2,3 

t I have attempted to rewrite this paper to stay close to Van Wyk’s notation. Some super- 
scripting of his variables was, however, necessary. 
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with x,+ < x,-~+~ and then integrate as in (2) we have 

~(xn+J = ~(4 + h, i bd(x,-j ,10,-d + 5 Y’~‘+I) P, , (3) 
j=O 

where 

b3 = kJ3, + 4(an + Pn) + 3 
q4Yn - %)@a - m> ’ 

b = 2 + 3% - f+nbn - 4 b, 
2 

6/3&L - 4 ’ (4) 

,f, 
1 

= -(I + 2ynb, + VA) 
2% 

, 

b, = 1 - b, - b, - b, , 

% = h,‘(x, - X& Bn = h,'(x, - ~-21, yn = h,l(x, - x,-3), 
(5) 

h, = xn+l - x, , G-3 < 7) < xn 

and 

p, = 1 + ; (%a + is + yn> + ; (%A + %Yn + PnYn) + ; %BnYrb - (6) 

Fitting the data (x,-~ ,f(xnPi , y(x,+J)), i = - 1, 0, 1,2, and performing the 
integration of (2) yields the corrector formula 

Y(x~+I) = Y&J + h, r: U(xn-, . Y(x,-8 + $ ~‘“‘(5) C, , (7) 
j=-1 

where 

d2 = 12/3,(1 :;j;% - %J ’ 

% + 1 
dl = 12oL,( 1 + an)(/L - 4 ’ 

do = 4 - 41 + Bn) - A(1 + 4, 

d-, = 1 - d2 - dl - do , h-2 < 4 G x,+1 

and 
5 cn= -(;+g4+iZ”o+$L. 1 

(8) 

(9) 
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Formulas (3) and (7) yield the predictor and corrector formulas 

and 

(10) 

(11) 

where 

Of course ylz+l is just the final value of YZ+~ which we choose to accept in the 
iteration procedure. 

2. STEP-SIZE CONTROL 

Let 2, be the integral curve defined by 

The local truncation error made by the predictor formula in going from x, to x,+~ 
is defined to be 

7, 2, = Ux,+J - I?:+1 . (13) 

Similarly for the corrector formula we define 

e 7, = -z4&+1) - YZ+1 . (14) 

It is the quantity T,~ that we shall try to estimate and use for step-size control. 
In this section we shall derive an estimate for rnc which contains Van Wyk’s as a 
special case (though a very accurate and practical special case). 

From (3) and (10) one has 

T,P = [Z,(X,) - yn] + hn i bj[f(Xn-j 9 Zn(Xn-j>) -f (X,-j 3 ~n-j)l 
j=O 

I 
+ 5! hn5Z%4 f’n 9 where X~-~ < w, G’ x, _ 
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Using a Taylor-series expansion off’in its second variable one has 

But the terms h,[Z,(x,-j) - ynJ are of the order O&T,+ + hn2fyTn-j), which 
will be small relative to 7,~. For a proof of the above assertion see [l]. [This 
assertion is quite often dispensed with in papers by assuming that the numerical 
formula (10) has the true values for yj (and thus for&) at the back values, i.e., for 
j < n. This assumption is certainly not justifiable.] Thus we accept the estimate 

Similarly we arrive at 

7, 
P- - $ hw5Z%lJ,) P, . (15) 

From (16) it follows that 

c 

i 

h,5Z?&) G 
7, = 

h6,-,Z:&-,) C,-, T’-l . 

From (13) and (14) one has 

c 

T”,-, = 
7,-l 

T;-1 - T,"pl 
(Y," - Yn”> 

which, with (15) and (16), implies 

Z$!l(Ll) G-1 
TL = z~~l(~,-,) c,-, - qI!,<q-1) pn-1 (Y,” - YnCh 

Substituting this result into (17) one has 

0 
7, = 

(17) 

We now make the usual assumption that the fifth-order derivatives are essentially 
constant over a few steps. (The greatest justification presented for this “usual 
assumption” is that it seems to be borne out in numerical experimentation with 

sw9/3-10 
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real world problems. As far as comparing derivatives of Z, with those of Z,-r , 
it can be shown that Zh”‘(x) - Z;?,(x) = O(7,); see [l].) Hence, we arrive at the 
estimate 

7, i i 
hn5 G 

’ = h,-, c,-l _ pnbl (Yn” - Yn% (18) 

for the local truncation error. 
For step-size control let us require that 

1 7,C/y,C 1 = K . 10-B 

for each n. (This criterion is of course replaced by an absolute criterion whenever 
ync = 0.) Then, from (18), h, must be determined such that 

K . 10-B / y,c / = * / c 
n-1 n-1 

2 p 
n-1 

( . / ynn - YnC II (19) 

From the relations for C, and the definitions of 01, , /$, , and yn one arrives at 

where 

C, = - ; [3 + A,h,’ + A,h,“], (20) 

A, = 5(2x, - x,-~ - x0&, 

A, = 10(x, - x,-,)(x, - x,-z). 

In like manner one arrives at 

where 
c,-1 - P,-, = -(l/12)0, 

D = 15 + 20(+-1 + ,4-l> + 15y,-I + 30~,&-1 

+ 20(%-,y,-, + Pn-1Yn-1) + 30%~dLYn--l . 

(21) 

It is important to note that A,, Az , and D are dependent only on x,-~ through x, 
(and not on x,+J and therefore are known before one needs to calculate h, . 

Substituting (20) and (21) into (19) yields 

where 

3hn5 + A,hn4 + A,hn3 + A, = 0, (22) 

A, = -K. 10-Bh$-,D YnC 
Y, P- e- Y?i 
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This is simply a fifth-degree polynomial in h, which we must solve at each step for 
step-size prediction. Applying Newton’s algorithm for (22) one has 

H ~+l = HK - 
3HK5 + A,HK4 + A,HK~ + A, 

15HK4 + 4A,HK3 + 3A,HK2 (23) 

In practice we iterate N times and take 

h, = H,x,. 

In order to start the iterative procedure one needs an initial guess for Ho . If we 
take Ho = h,-, then N = 20 gives agreement between HN and HNel to 5 significant 
figures. This of course is much too conservative in practice. 

Numerical testing indicates, though it has not been proven, that Eq. (22) has 
one real root and four complex roots for all A, , A, , and A, arising from differential 
equations with real coefficients. 

If in (19) we accept the further estimate C, z C,-, , we arrive at 

(24) 

Taking the right-hand side of (24) as the initial guess, H,, , for (23) yields agreement 
of HN and HNel to five significant figures for N = 5. In fact, with this initial guess> 
we usually get agreement of H,, and H5 to one or two significant figures. This is 
significant since Ho , as given by the right-hand side of (24), is exactly the estimate 
which Van Wyk uses to control step size. Hence Van Wyk’s estimate agrees very 
well with the estimate produced by (22) and, in the next section, we give examples. 
in which the estimate produced by (22) is very accurate and reliable. 

3. NUMERICAL RESULTS 

Most procedures for changing step size depend on an estimate of the local 
truncation error. However, in testing these procedures, one usually calculates a 
sample problem with known solution and compares the true solution with the 
calcmated solution. Usually no attempt is made at measuring the difference between 
the true local truncation error [as defined by Eq. (14)] and the estimate for the local 
truncation error [which in this paper is given by Eq. (18)]. This is important for 
two reasons. If the truncation-error estimator is consistently too conservative 
(i.e., always estimates the error to be larger than the true truncation error) it will 
produce an accurate solution to a numerically stable problem, but at the cost of 
too much computation time. Secondly, one may miss entirely the fact that in a 
numerically unstable problem the estimator may indeed very accurately compute 
the local truncation error while producing an arbitrarily bad solution. That is, it 
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is possible to have small local truncation errors at every step of a solution while 
producing an arbitrarily inaccurate solution. This behavior is exhibited in the 
solution of Eq. (27), the results for which are given in Table III. In this case 
(see Fig. l), the integral curves for the differential equation rapidly diverge. At 
every step truncation errors and rounding errors occur, and even though the errors 
may be small, the calculation procedure tries to follow a new integral curve which 
is diverging from the true solution. 

FIGURE 1 

Numerical results are given here for the following three initial-value problems: 

y’ = -2xy2 Solution: y(x) = [I + x21-l, 
Y(O) = 1, 
Integral curve through (a, b): 

Z(x) = b[l + (x2 - d)b]-1; 

(25) 

y’ = 5y + 207re5x cos 20xX 
Y(O) = 0, 

Solution: y(x) = e5% sin 20nx, 

Integral curve through (a, b): 

Z(x) = be5(z-a) + e5”[sin 20nx - sin 207=ra]. 

y’ = lOO(y - x) Solution: y(x) = x + l/100, 
y(0) = l/100, 
Integral curve through (a, 6): 

Z(x) = x + l/100 + eloo(z-a)(b - a - I/100). 

(26) 

(27) 
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The routine was started with a fourth-order classical Runge-Kutta algorithm 
using a fixed step size of 0.001. The corrector formula was applied once at each 
step with two derivative solutions per step. Each time the routine is run a value, T, 
for the desired local truncation error is preset. The question with which we are 
concerned is whether the step size predicted by (23) causes the routine to achieve T 
at each step. Hence, for each step we have also calculated the true local truncation 
error at each step [as defined by (14)] for comparison. The calculated located local 
truncation error appearing in the tables is the estimate given by Eq. (18). The 
“true-solution” column in the tables is the exact (to the number of significant 
figures listed) solution of the initial-value problem as calculated from the known 
solution. 

TABLE I” 

x 
Calculated True 

solution solution 

Calculated True local 
local truncation truncation 

error error 
Step 
Size 

0.01 0.9999OcOl 0.99990001 1.83 E-15 3.55 E-15 0.002 
0.07 0.99512388 0.99512389 6.6 E-9 8.7 E-9 0.032 
0.15469 0.97662873 0.97662877 6.0 E-9 6.9 E-9 0.0195 
0.41205 0.85485891 0.85485901 4.5 E-9 4.7 E-9 0.0192 
0.8938 0.55590377 0.55590376 -4.9 E-9 -5.8 E-9 0.0248 
1.508 0.30535907 0.30535900 -4.0 E-9 -4.6 E-9 0.038 
2.507 0.13730929 0.13730933 4.7 E-9 6.0 E-9 0.0578 
3.585 0.07219506 0.07219512 4.6 E-9 5.6 E-9 0.0785 
4.545 0.04617671 0.04617676 1.3 E-9 1.5 E-9 0.08 
5.025 0.03809607 0.03809611 6.6 E-10 8.0 E-10 0.08 

Note: In the last two steps, the local truncation error fell below the preset value of 7’ = 5 E-9 
due to the maximum step-size limitation of 0.08. 

D The notation E-S represents IO-&. 

In Table I we have the information for problem (25) which has a well-behaved 
solution (i.e., small changes in the data yield only small variations in the solutions). 
All the calculations in Table I are for T = 5 x 10e9. An upper bound on the 
step size was set at 8 x 1O-2 (h4 = 0.5 x 10e4), and the step size was not allowed 
to more than double at each step. The same problem with T = 1O-6 was run 
without an upper limit on the step size with a resulting step size of 7.8 being used 
for the step following x = 5.597 with two significant figures of accuracy remaining 
in the computed solution and local truncation error of 1.89 x 10-T. 

The initial-value problem (26) has a rapidly oscillating solution which grows 
exponentially like e5r in absolute value. Calculations are given between x = 0 and 
x = 1 which covers ten periods of the sine wave oscillation. The values given in 
Table II are for T = 5 x lo-‘. 
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TABLE II 

Calculated 
local True local Slope of 

Step Calculated True truncation truncation the true 
x Size solution solution error error solution 

0.0096 0.0018 5.9544 E-l 5.9544 E-l -5.1 E-7 -5.1 E-7 5.7 E + 1 
0.0891 0.0036 -9.9037 E-l -9.9036 E-l -1.9 E-6 -3.6 E-6 7.1 E + 1 
0.208 0.0015 1.3864 1.3865 -4.2 E-7 -4.2 E-7 1.6E +2 
0.347 0.0014 7.8233 E-l 7.8248 E- 1 7.4 E-7 7.9 E-7 -3.5 E + 2 
0.695 0.0016 -8.4169 -8.4157 --8.5 E-7 -9.6 E-7 1.9E + 3 
0.850 0.0007 -2.0961 -2.0931 2.5 E-7 2.5 E-7 -4.4 E + 3 
0.978 0.0021 -1.3020E + 2 -1.3019E + 2 4.1 E-7 3.3 E-7 1.1 E + 3 

TABLE III 

Calculated 
local True local 

Step Calculated True truncation truncation 
x size solution solution error error 

0.103 1.0 E-3 1.13000 E-l 1.13000 E-l 4.1 E-14 -1.8 E-13 
0.213 1 .O E-3 2.22999 E-l 2.30000 E-l 2.2 E-9 -9.3 E-9 
0.302 1.4 E-3 3.07089 E-l 3.12479 E-l 5.8 E-9 2.4 E-9 
0.400 4.6 E-4 -9.48037 E + 1 4.10273 E-l 5.0 E-9 4.1 E-9 
0.500 4.6 E-4 -2.06936 E + 6 5.10189 E-l 5.0 E-9 4.1 E-9 
0.600 4.6 E-4 -4.5016 E + 10 6.10014 E-l 5.0 E-9 4.1 E-9 
0.900 4.6 E-4 -4.8533 E + 23 0.10106 E-l 5.0 E-9 4.1 E-9 

Small perturbations of the data in problem (27) cause large changes in the 
solution and we should, therefore, expect a scheme which progresses step by step 
to give very poor results. This behavior is certainly illustrated in Table III. A 
maximum step-size was set at 1O-2 and T was preset to 5 x 1O-g. The iterative 
procedure produces step sizes to achieve local truncation errors of T despite the 
fact that the calculated solution diverges rapidly from the true solution. Examples 
like (27) and Table III illustrate the care which must be exercised when using any 
method of step-size control based on local truncation-error estimation. 

4. CONCLUSIONS 

The subject of this paper has dealt with only one aspect of Van Wyk’s paper [2], 
that of truncation-error estimation as it is used for step-size control. I believe that 
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we have established the accuracy of Van Wyk’s estimates while pointing out that 
it is local truncation error which is being estimated and not the true error in the 
solution. 
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